Film Crew, Film Jobs, Movie Crew, Film Forums, Film Industry Jobs

Film Festivals
Film Schools
Film Scripts
Media Relations
Movie Crew
Movie Equipment
Movie Production
Movie Sets
Movie Studios
New Productions
Special Services

Movie Equipment

Plasma Display

A plasma display panel (PDP) is an emissive flat panel display where light is created by phosphors excited by a plasma discharge between two flat panels of glass. The gas discharge contains no mercury (contrary to the backlights of an AMLCD). An inert mixture of noble gases (neon and xenon) is used instead.

The plasma display panel was invented at the University of Illinois at Urbana-Champaign by Donald L. Bitzer and H. Gene Slottow in 1964 for the PLATO Computer System. The original monochrome (usually orange or green) panels enjoyed a surge of popularity in the early 1970s because the displays were rugged and needed neither memory nor circuitry to refresh the images. There followed a long period of sales decline in the late 1970s as semiconductor memory made CRT displays relatively cheaper than plasma displays. Nonetheless, plasma's relatively large screen size and thin profile made the displays attractive for high-profile placement such as lobbies and stock exchanges.

In 1983, IBM introduced a 19" orange on black monochrome display (model 3290 'information panel') which was able to show four simultaneous 3270 virtual machine (VM) terminal sessions. That factory was transfer in 1987 to startup Company, Plasmaco that one of Dr. Bitzer's students, Dr. Larry Weber founded with Stephen Globus, and James Kehoe, who was the IBM plant manager. In 1992, Fujitsu introduced the world's first 21-inch full color display. It was a hybrid based on the plasma display created at the University of Illinois at Urbana-Champaign and NHK STRL, achieving superior brightness. In 1996, Matsushita purchase Plasmaco and its color AC technology and American facility. In 1997 Pioneer started selling the first plasma television to the public.

Screen sizes have increased since the 21 inch display in 1992. The largest plasma display in the world was shown at the CES (Consumer Electronics Show) in Las Vegas in 2006. It measured 103" and was made by Matsushita Electrical Industries (Panasonic).

Until quite recently the superior brightness, wider color range, and wider viewing angle of color plasma displays, when compared to LCD televisions, made them one of the most popular forms of display for HDTV. However since that time improvements in LCD technology have closed the gap dramatically. The lower weight, price, and power consumption of LCD’s have seen them make large inroads into the former plasma market.

Plasma displays are bright (1000 lx or higher for the module), have a wide color gamut, and can be produced in fairly large sizes, up to 262 cm (103 inches) diagonally. They have a very high "dark-room" contrast, creating the "perfect black" desirable for watching movies. The display panel is only about 6 cm (2 1/2 inches) thick, while the total thickness, including electronics, is less than 10 cm (4 inches). Plasma displays use as much power per square meter as a CRT or an AMLCD television. Real life measurements of plasma power consumption find it to be much less than that normally quoted by manufacturers. Nominal measurements indicate 150 Watts for a 50" screen.

The lifetime of the latest generation of plasma displays is estimated at 60,000 hours of actual display time. More precisely, this is the estimated half life of the display, the point where the picture has degraded to half of its original brightness, which is considered the end of the functional life of the display.

Competing displays include the Cathode ray tube, OLED, AMLCD, DLP, SED-tv and field emission flat panel displays. The main advantage of plasma display technology is that a very wide screen can be produced using extremely thin materials. Since each pixel is lit individually, the image is very bright and has a wide viewing angle. Most cheaper consumer displays appear to have an insufficient color depth - a moving dithering pattern may be easily noticeable for a discerning viewer over flat areas or smooth gradients; expensive high-resolution panels are much better at managing the problem.

(Comparison with LCD and Plasma)

Slim design (Wall mountable)
Larger than LCD screens

Plasma displays are very fragile making them tricky to ship and install.
Expensive, although cheaper than LCD’s at larger sizes.
Is subject to screen burn-in, but modern panels have a manufacturer rated lifespan of 50,000 or more hours.
First 2000 hours is its brightest point. Every hour there after, the display gradually dims.
At higher elevations, usually 6000 ft or higher, they exhibit noticeable humming.

The xenon and neon gas in a plasma television is contained in hundreds of thousands of tiny cells positioned between two plates of glass. Long electrodes are also sandwiched between the glass plates, on both sides of the cells. The address electrodes sit behind the cells, along the rear glass plate. The transparent display electrodes, which are surrounded by an insulating dielectric material and covered by a magnesium oxide protective layer, are mounted above the cell, along the front glass plate.

In a monochrome plasma panel, control circuitry charges the electrodes that cross paths at a cell, causing the plasma to ionize and emit photons between the electrodes. The ionizing state can be maintained by applying a low-level voltage between all the horizontal and vertical electrodes - even after the ionizing voltage is removed. To erase a cell all voltage is removed from a pair of electrodes. This type of panel has inherent memory and does not use phosphors. A small amount of nitrogen is added to the neon to increase hysteresis.

To ionize the gas in a color panel, the plasma display's computer charges the electrodes that intersect at that cell thousands of times in a small fraction of a second, charging each cell in turn. When the intersecting electrodes are charged (with a voltage difference between them), an electric current flows through the gas in the cell. The current creates a rapid flow of charged particles, which stimulates the gas atoms to release ultraviolet photons.

The phosphors in a plasma display give off colored light when they are excited. Every pixel is made up of three separate subpixel cells, each with different colored phosphors. One subpixel has a red light phosphor, one subpixel has a green light phosphor and one subpixel has a blue light phosphor. These colors blend together to create the overall color of the pixel. By varying the pulses of current flowing through the different cells, the control system can increase or decrease the intensity of each subpixel color to create billions of different combinations of red, green and blue. In this way, the control system can produce colors across the entire visible spectrum. Plasma displays use the same phosphors as CRTs, accounting for the extremely accurate color reproduction.

Contrast ratio indicates the difference between the brightest part of a picture and the darkest part of a picture, measured in discrete steps, at any given moment. The implication is that a higher contrast ratio means more picture detail. Contrast ratios for plasma displays are often advertised as high as 10000:1. On the surface, this is a great thing. In reality, there are no standardized tests for contrast ratio, meaning each manufacturer can publish virtually any number that they like. To illustrate, some manufacturers will measure contrast with the front glass removed, which accounts for some of the wild claims regarding their advertised ratios. For reference, the page you're reading now (on a computer monitor) is actually about 50:1. A printed page is about 80:1. A really good print at a movie theater will be about 500:1

plasma displays, plasma display panels, plasma display tv